x
random variable extracted by populations represented by the columns of data
respectively or sample
to a normally-distributed samples with assinged mean and standard deviation or vice versa in case inverse
is TRUE
R/normalizeGaussian_sevaralstations.R
normalizeGaussian_severalstations.Rd
Converts several samples x
random variable extracted by populations represented by the columns of data
respectively or sample
to a normally-distributed samples with assinged mean and standard deviation or vice versa in case inverse
is TRUE
normalizeGaussian_severalstations(
x,
data = x,
cpf = NULL,
mean = 0,
sd = 1,
inverse = FALSE,
step = NULL,
prec = 10^-4,
type = 3,
extremes = TRUE,
sample = NULL,
origin_x = NULL,
origin_data = origin_x
)
value to be converted
a sample of data on which a non-parametric probability distribution is estimated
cumulative probability distribution. If NULL
(default) is calculated as ecdf(data)
mean (expected value) of the normalized random variable. Default is 0.
standard deviation of the normalized random variable. Default is 1.
logical value. If TRUE
the function works inversely (the opposite way). Default is FALSE
.
vector of values in which step discontinuities of the cumulative probability function occur. Default is NULL
amplitude of the neighbourhood of the step discontinuities where cumulative probability function is treated as non-continuous.
see quantile
logical variable.
If TRUE
(default) the probability or frequency is multiplied by $$\frac{N}{N+1}$$ where \(N\) is the length of data
information on how to sample x
and data
. Default is NULL
, this means that the values of each column of x
and data
belong to the same sample. If x
and data
are sampled for each month seperately, it is set to monthly
.
date corresponding to the first row of x
date corresponding to the first row of data
a matrix with the normalized variable or its inverse
It applies normalizeGaussian
for each column of x
and data
.
See the R code for further details
if (FALSE) { # \dontrun{
library(RMAWGEN)
set.seed(1234)
N <- 30
x <- rexp(N)
y <- x+rnorm(N)
df <- data.frame(x=x,y=y)
dfg <- normalizeGaussian_severalstations(df,data=df,extremes=TRUE,inverse=FALSE)
dfi <- normalizeGaussian_severalstations(dfg,data=df,extremes=TRUE,inverse=TRUE)
N <- 365*2
origin <- "1981-01-01"
x <- rexp(N)
y <- x+rnorm(N)
df <- data.frame(x=x,y=y)
dfgm <- normalizeGaussian_severalstations(df,data=df,extremes=TRUE,
inverse=FALSE,origin_x=origin,origin_data=origin,sample="monthly")
dfim <- normalizeGaussian_severalstations(dfg,data=df,extremes=TRUE,
inverse=TRUE,origin_x=origin,origin_data=origin,sample="monthly")
## Compatibility with 'lubridate' package
library(lubridate)
N <- 30
x <- rexp(N)
y <- x+rnorm(N)
df <- data.frame(x=x,y=y)
dfg <- normalizeGaussian_severalstations(df,data=df,extremes=TRUE,inverse=FALSE)
dfi <- normalizeGaussian_severalstations(dfg,data=df,extremes=TRUE,inverse=TRUE)
N <- 365*2
origin <- "1981-01-01"
x <- rexp(N)
y <- x+rnorm(N)
df <- data.frame(x=x,y=y)
dfgm <- normalizeGaussian_severalstations(df,data=df,extremes=TRUE,
inverse=FALSE,origin_x=origin,origin_data=origin,sample="monthly")
dfim <- normalizeGaussian_severalstations(dfg,data=df,extremes=TRUE,
inverse=TRUE,origin_x=origin,origin_data=origin,sample="monthly")
} # }