This functions creates a stochastic Occurrence Model for the variable x (PrecipitationOccurrenceModel S3 object) through a calibration from observed data.

PrecipitationOccurrenceModel(
  x,
  exogen = NULL,
  p = 1,
  monthly.factor = NULL,
  valmin = 0.5,
  id.name = NULL,
  ...
)

Arguments

x

variable utilized for the auto-regression of its occurrence, e.g. daily precipitaton

exogen

exogenous predictors

p

auto-regression order

monthly.factor

vector of factors indicating the month of the days

valmin

minimum admitted value for daily precipitation amount

id.name

identification name of the station

...

further arguments

Value

The function returns a PrecipitationOccurrenceModel-class S3 object containing the following elements:

predictor data frame containg the endogenous and exogenous predictors of the logistic regression model;

glm the genaralized liner model using for the logistic regression;

p auto-regression order

valmin minimum admitted value for daily precipitation amount

See also

Examples


library(RGENERATEPREC)

data(trentino)

year_min <- 1961
year_max <- 1990

period <- PRECIPITATION$year>=year_min & PRECIPITATION$year<=year_max
period_temp <- TEMPERATURE_MAX$year>=year_min & TEMPERATURE_MAX$year<=year_max

prec_mes <- PRECIPITATION[period,]
Tx_mes <- TEMPERATURE_MAX[period_temp,]
Tn_mes <- TEMPERATURE_MIN[period_temp,]
accepted <- array(TRUE,length(names(prec_mes)))
names(accepted) <- names(prec_mes)
for (it in names(prec_mes)) {
  acc <- TRUE
  acc <- (length(which(!is.na(Tx_mes[,it])))==length(Tx_mes[,it]))
  acc <- (length(which(!is.na(Tn_mes[,it])))==length(Tn_mes[,it])) & acc
  accepted[it]  <- (length(which(!is.na(prec_mes[,it])))==length(prec_mes[,it])) & acc
  
}

valmin <- 1.0
prec_mes <- prec_mes[,accepted]



Tx_mes <- Tx_mes[,accepted]
Tn_mes <- Tn_mes[,accepted]
prec_occurrence_mes <- prec_mes>=valmin

station <- names(prec_mes)[!(names(prec_mes) %in% c("day","month","year"))]
it <- station[2]
vect <- Tx_mes[,it]-Tn_mes[,it]
months <- factor(prec_mes$month)
model <- PrecipitationOccurrenceModel(x=prec_mes[,it],exogen=vect,monthly.factor=months)

probs <- predict(model$glm,type="response")





plot(months[-1],probs)


newdata <- model$predictor[2000:2007,]
probs0 <- predict(model,newdata=newdata)